

FREA: Feasibility-Guided Generation of Safety-Critical **Scenarios with Reasonable Adversariality**

Keyu Chen¹, Yuheng Lei², Hao Cheng¹, Haoran Wu¹, Wenchao Sun¹, Sifa Zheng¹

¹SVM, Tsinghua University & ²The University of Hong Kong.

Code is available

Core Contribution:

FREA incorporates feasibility as guidance to generate adversarial yet AV-feasible, safety-critical scenarios for autonomous driving.

Methods

Algorithm 1 Feasibility-guided reasonable adversarial policy (FREA)

1: **Offline Part** (Section 3.1)

- 2: Initialize feasibility value networks V_h , Q_h .
- 3: for each gradient step do
- # Optimal feasible state-value function learning Update V_h using Eq. (3)
- # Optimal feasible action-value function learning Update Q_h using Eq. (4) 6: **end for**
- 7: **Online Part** (Section 3.2)
- 8: Initialize policy parameters θ_0 , reward value function parameters ψ_0
- 9: for $k = 0, 1, 2, \dots$ do
- Collect set of trajectories $\mathcal{B}_k = \{\tau_i\}$ with policy π_{θ_k} , where τ_i is a *T*-step episode. 10:
- Compute reward advantage $A_r^{\pi_{\theta_k}}(s, a)$, using generalized advantage estimator (GAE [23]). 11: Compute feasibility advantage using Eq. (9). 12:

Table 1: Feasibility evaluation using Expert [26] as AV under different CBV methods. Results are

CBV	Feasibility	Tow	n05 intersect	ions	Town02 intersections				
		CR (↓)	IR (\downarrow)	ID (↓)	CR (↓)	IR (\downarrow)	ID (↓)		
KING[5]	×	76.67%	65.97%	7.54m	N/A	N/A	N/A		
PPO	×	37.5%	35.56%	10.57m	30.0%	51.18%	12.40m		
FPPO-RS	\checkmark	11.25%	34.92%	9.13m	24.29%	45.36%	9.16m		
FREA	✓	5.0%	31.10%	6.25m	5.71%	27.18%	4.94m		

FREA balances adversariality with AV feasibility for minimal collision severity.

FREA effectively generate safety-critical scenarios, yielding considerable near-miss events.

Generalization of AV Testing

Table 2: Comparative performance of AVs across different maps, using CBV methods pre-trained with various surrogate AVs. Results are the average of 10 runs in "Scenario9" with varied seeds.

- Derive overall advantage using Eq. (6) # Advantage calculating 13:
- Fit reward value function, by Smooth L1 Loss. # Value function learning 14:
- # Policy learning Update the policy parameters θ by maximizing Eq. (5). 15: 16: **end for**

Largest Feasible Region (LFR):

Definition 1 (Optimal feasible value function). Based on [13, 15, 22], the optimal feasible statevalue function V_h^* and the optimal feasible action-value function Q_h^* are defined in Eqs. (1) and (2).

$$V_h^*(s^{\text{AV}}) := \min_{\pi^{\text{AV}}} \max_{t \in \mathbb{N}} h\left(s_t^{\text{AV}}\right), s_0^{\text{AV}} = s^{\text{AV}}, a_t^{\text{AV}} \sim \pi^{\text{AV}}\left(\cdot \mid s_t^{\text{AV}}\right), \tag{1}$$

$$Q_{h}^{*}(s^{\text{AV}}, a^{\text{AV}}) := \min_{\pi^{\text{AV}}} \max_{t \in \mathbb{N}} h\left(s_{t}^{\text{AV}}\right), s_{0}^{\text{AV}} = s^{\text{AV}}, a_{0}^{\text{AV}} = a^{\text{AV}}, a_{t+1}^{\text{AV}} \sim \pi^{\text{AV}}\left(\cdot \mid s_{t+1}^{\text{AV}}\right).$$
(2)

Definition 2 (Largest Feasible Region (LFR)). The largest feasible region is the sub-zero level set of the optimal feasible state-value function.

$$\mathcal{S}_f^* := \left\{ s^{\mathrm{AV}} \mid V_h^*(s^{\mathrm{AV}}) \le 0 \right\}$$

Approximate LFR through Offline Learning:

$$\mathcal{L}_{V_h}(\omega) = \mathbb{E}_{\mathcal{D}} \left[L_{\text{rev}}^{\tau} \left(Q_h(s^{\text{AV}}, a^{\text{AV}}; \phi) - V_h(s^{\text{AV}}; \omega) \right) \right],$$
(3)
$$\mathcal{L}_{Q_h}(\phi) = \mathbb{E}_{\mathcal{D}} \left[\left(\left((1 - \gamma)h(s^{\text{AV}}) + \gamma \max\left\{ h(s^{\text{AV}}), V_h(s^{\text{AV}'}; \omega) \right\} \right) - Q_h(s^{\text{AV}}, a^{\text{AV}}; \phi) \right)^2 \right],$$
(4)

Optimal Feasible Advantage Function:

Lemma 1. As the BVs follow deterministic policy, the optimal feasible action-value function of AV can be achieved by AV's current state and next state (see Appendix A.2 for proof).

CBV	Surr. AV AV		Town05 intersections							Town02 intersections					
CDV			$CR(\downarrow)$	$OR(\downarrow)$	$\mathrm{RF}\left(\downarrow ight)$	UC (\downarrow)	TS (↓)	OS (†)	CR (↓)	$OR(\downarrow)$	$\operatorname{RF}\left(\downarrow\right)$	UC (\downarrow)	TS (↓)	OS (†)	
Standard	X	Expert PlanT	$0.0\% \\ 1.0\%$	0.0m 0.0m	7.0m 7.0m	1% 6%	55s 70s	94.0 90.0	$0.0\% \\ 1.0\%$	0.0m 0.0m	6.0m 6.0m	2% 6%	63s 76s	93.0 90.0	
PPO	Expert	Expert PlanT	36.0% 61.0%	0.0m 1.0m	6.0m 7.0m	8% 11%	66s 70s	76.0 65.0	40.0% 70.0%	0.0m 0.0m	6.0m 6.0m	15% 27%	66s 64s	72.0 57.0	
PPO	PlanT	Expert PlanT	26.0% 45.0%	0.0m 0.0m	6.0m 7.0m	8% 7%	64s 69s	80.0 72.0	21.0% 51.0%	0.0m 0.0m	6.0m 6.0m	12% 18%	74s 70s	80.0 67.0	
FREA	Expert	Expert PlanT	4.0% 10.0%	0.0m 0.0m	7.0m 7.0m	7% 5%	67s 73s	89.0 86.0	9.0% 10.0%	0.0m 0.0m	6.0m 7.0m	16% 24%	75s 86s	83.0 79.0	
FREA	PlanT	Expert PlanT	5.0% 9.0%	0.0m 0.0m	7.0m 7.0m	5% 6%	62s 73s	90.0 87.0	14.0% 17.0%	0.0m 0.0m	6.0m 7.0m	15% 18%	75s 83s	82.0 79.0	

FREA exhibits strong generalization in AV testing under various AV methods and traffic environment.

AV Training Results

Table 5: Comparative performance of AVs pretrained with various CBV methods across different maps. Results are the average of 10 runs in "Scenario9" with varied seeds.

Surr. CBV	CBV	Town05 intersections							Town02 intersections					
		CR (↓)	$OR(\downarrow)$	$\operatorname{RF}\left(\downarrow\right)$	UC (↓)	TS (↓)	OS (†)	$CR(\downarrow)$	$OR(\downarrow)$	$\operatorname{RF}\left(\downarrow\right)$	UC (↓)	TS (↓)	OS (†)	
Standard	Standard	11%	4m	19m	4%	68s	85	39%	8m	20m	18%	57s	70	
PPO		17%	11m	17m	6%	66s	82	40%	11m	19m	15%	63s	70	
FREA		3%	6m	18m	1%	75s	89	40%	3m	18m	19%	56s	71	
Standard	FREA	39%	6m	17m	7%	66s	73	79%	3m	17m	35%	45s	51	
PPO		36%	15m	21m	6%	66s	74	79%	4m	14m	37%	44s	51	
FREA		31%	12m	17m	5%	71s	76	73%	3m	20m	28%	51s	55	

FREA provides effective data (safety-critical data) for AV training, thus improving policy robustness.

 $Q_h^*\left(s^{\text{AV}}, a^{\text{AV}}\right) = \begin{cases} V_h^*(s^{\text{AV}}) & h(s^{\text{AV}'}) \ge h(s^{\text{AV}}) \\ \max\{h(s^{\text{AV}}), V_h^*(s^{\text{AV}'})\} & h(s^{\text{AV}'}) < h(s^{\text{AV}}) \end{cases}$

 $A_h^*(s^{\text{AV}}, a^{\text{AV}}) = Q_h^*(s^{\text{AV}}, a^{\text{AV}}) - V_h^*(s^{\text{AV}})$ $= \begin{cases} V_{h}^{*}(g(s')) - V_{h}^{*}(g(s)) & h(g(s')) \ge h(g(s)) \\ \max\{h(g(s)), V_{h}^{*}(g(s'))\} - V_{h}^{*}(g(s)) & h(g(s')) < h(g(s)) \end{cases}$

Feasibility-dependent Objective Function :

$$L(\theta) = \mathbb{E}_{\pi_{\theta_k}} \left[\min\left(r_t(\theta) A^{\pi_{\theta_k}}(s, a), \operatorname{clip}\left(r_t(\theta), 1 - \epsilon, 1 + \epsilon\right) A^{\pi_{\theta_k}}(s, a)\right) \right],$$
$$A^{\pi_{\theta_k}}(s, a) = A_r^{\pi_{\theta_k}}(s, a) \cdot I(s, s') + A_h^*(s^{\operatorname{AV}}, a^{\operatorname{AV}}) \cdot (1 - I(s, s')),$$

Representative Scenarios

(7)

