

FREA: Feasibility-Guided Generation of Safety-Critical Scenarios with Reasonable Adversariality

Keyu Chen¹, Yuheng Lei², Hao Cheng¹, Haoran Wu¹, Wenchao Sun¹, Sifa Zheng¹

¹Tsinghua University, ²The University of Hong Kong.

11/08/2024

What are safety-critical scenarios

Vehicle avoids jaywalker

Vehicle avoids dumped truck

Vehicle avoids unusual objects

Vehicles encountering glare

□ Learned driving models are **brittle to o.o.d. input** and **require diverse training data**

Critical scenarios are **rarely observed** in real world

Hand-crafted scenarios in current simulators needs to be manually tuned

(读) 消華大学 Tsinghua University

Safety-Critical Scenarios as attacks

Is collision-driven adversarial attacks the right way?

[1] KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients [Hanselmann et al. ECCV 2022]

[2] MIXSIM: A Hierarchical Framework for Mixed Reality Traffic Simulation [Suo et al. CVPR 2023]

[3] CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [Zhang et al. CoRL 2023]

[4] Dense reinforcement learning for safety validation of autonomous vehicles [Feng et al. Nature 2023]

[5] Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors [Hao et al. TIV 2023]

[6] CausalAF: Causal Autoregressive Flow for Safety-Critical Driving Scenario Generation [Ding et al. CoRL 2022]

[7] Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior [Rempe et al. CVPR 2022]

Is collision-driven adversarial attacks the right way?

Real-world driving behavior is often goal-driven or route-driven

Same driving destinations and aggressive behaviors lead to safety-critical scenarios.

Collision is the consequence, not the objective

Is collision-driven adversarial attacks the right way?

Collision-driven attacks often create unreasonable and AV infeasible scenarios

AV infeasible: no policy ensures AV's persistent safety (AV doomed to crash)

Video Source: MIXSIM: A Hierarchical Framework for Mixed Reality Traffic Simulation [Suo et al. CVPR 2023] Image Source: Reachability Constrained Reinforcement Learning [Yu et al. ICML 2022]

Create scenarios with reasonable adversariality

Create adversarial while AV-feasible safety-critical scenarios

Create Reasonable Adversarial Scenarios

Select Critical Background Vehicle (CBV)

Candidate Selection Rules

- Within 25 meters of the AV
- In the same lane as the AV
- Not the CBV that has reached the goal

The closest candidate is the CBV

Goal-Based RL Reward Setting

Goal-Based RL Reward

• Goal is the reference point in the AV route

 $\begin{aligned} R_t &= d(\text{CBV}_{t-1}, \text{Goal}_{t-1}) - d(\text{CBV}_t, \text{Goal}_t) + \\ & 15 * r_t^{collision} + 15 * r_t^{finish} \end{aligned}$

Encourage the CBV to reach the goal

Create Adversarial yet AV-feasible Scenarios

Establish Largest Feasible Region (LFR) of AV

LFR focus on persistent safety instead of the current safety

Image Source: Reachability Constrained Reinforcement Learning [Yu et al. ICML 2022] Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model [Zheng et al. ICLR 2024]

9

Establish largest feasible region (LFR) of AV

Learning Feasible Value Function from Offline Data^[1]

[1] Safe Offline Reinforcement Learning with Feasibility-Guided Diffusion Model [Zheng et al. ICLR 2024]

Create AV-feasible Scenarios

□ Train CBV with feasibility-dependent objective

Feasibility-depend advantage

$$A(s,a) = \begin{cases} A_r(s,a) & \text{AV-feasible} \\ -A_h^*(s^{\text{AV}},a^{\text{AV}}) & \text{AV-infeasible} \end{cases}$$

AV-feasible

Goal-based adversarial advantage function

$$A_r(s,a) = Q_r(s,a) - V_r(s)$$

AV-infeasible

AV's optimal feasibility advantage function

 $A_h^*(s^{\mathrm{AV}}, a^{\mathrm{AV}}) = Q_h^*(s^{\mathrm{AV}}, a^{\mathrm{AV}}) - V_h^*(s^{\mathrm{AV}})$

□ Train CBV with feasibility-dependent objective

Algorithm 1 Feasibility-guided reasonable adversarial policy (FREA)

- 1: Offline Part (Section 3.1)
- 2: Initialize feasibility value networks V_h , Q_h .
- 3: for each gradient step do
- 4: Update V_h using Eq. (3) # Optimal feasible state-value function learning
- 5: Update Q_h using Eq. (4) # Optimal feasible action-value function learning
- 6: **end for**
- 7: Online Part (Section 3.2)
- 8: Initialize policy parameters θ_0 , reward value function parameters ψ_0
- 9: for k = 0, 1, 2, ... do

10: Collect set of trajectories $\mathcal{B}_k = \{\tau_i\}$ with policy π_{θ_k} , where τ_i is a *T*-step episode.

- 11: Compute reward advantage $A_r^{\pi_{\theta_k}}(s, a)$, using generalized advantage estimator (GAE [23]).
- 12: Compute feasibility advantage using Eq. (9).
- 13: Derive overall advantage using Eq. (6) # Advantage calculating
- 14: Fit reward value function, by Smooth L1 Loss. # Value function learning
- 15: Update the policy parameters θ by maximizing Eq. (5). # Policy learning

16: **end for**

Experiment

Questions need to answer

- Can FREA generate **adversarial** scenarios?
- Can FREA generate **AV-feasible** scenarios?
- How can FREA help **testing AV method**?
- How can FREA help **training AV method**?
- Any scenario visualization?

Baselines

- Standard (Rule-based traffic flow)
- PPO (Goal-based Reward)
- FPPO-RS (feasibility penalty)
- KING^[1] (Optimization-based method)
- FREA (Our method)

Experimental Results

Can FREA generate adversarial scenarios?

Post Encroachment Time (PET)

Near-Miss Event

Can FREA generate AV-feasible scenarios?

Table 1: Feasibility evaluation using Expert [26] as AV under different CBV methods. Results are the average of 10 runs in "Scenario9" with varied seeds.

CBV	Feasibility	Tow	n05 intersect	tions	Town02 intersections				
CDV		CR (↓)	$\mathrm{IR}\left(\downarrow\right)$	$ID(\downarrow)$	CR (↓)	$\mathrm{IR}\left(\downarrow\right)$	$ID(\downarrow)$		
KING[5]	×	76.67%	65.97%	7.54m	N/A	N/A	N/A		
PPO	X	37.5%	35.56%	10.57m	30.0%	51.18%	12.40m		
FPPO-RS	\checkmark	11.25%	34.92%	9.13m	24.29%	45.36%	9.16m		
FREA	1	5.0%	31.10%	6.25m	5.71%	27.18%	4.94m		

Experimental Results

□ FREA generalizes well in AV testing

Table 2: Comparative performance of AVs across different maps, using CBV methods pre-trained with various surrogate AVs. Results are the average of 10 runs in "Scenario9" with varied seeds.

CBV	Surr. AV AV		Town05 intersections						Town02 intersections					
CDV			$\operatorname{CR}\left(\downarrow\right)$	$\mathrm{OR}\left(\downarrow\right)$	$\mathrm{RF}\left(\downarrow\right)$	UC (\downarrow)	$\mathrm{TS}\left(\downarrow\right)$	$OS(\uparrow)$	$\operatorname{CR}\left(\downarrow\right)$	$\text{OR}\left(\downarrow\right)$	$\mathrm{RF}\left(\downarrow\right)$	UC (\downarrow)	$\mathrm{TS}\left(\downarrow\right)$	$OS\left(\uparrow\right)$
Standard	×	Expert PlanT	$0.0\% \\ 1.0\%$	0.0m 0.0m	7.0m 7.0m	1% 6%	55s 70s	94.0 90.0	$0.0\% \\ 1.0\%$	0.0m 0.0m	6.0m 6.0m	2% 6%	63s 76s	93.0 90.0
PPO	Expert	Expert PlanT Expert	36.0% 61.0% 26.0%	0.0m 1.0m 0.0m	6.0m 7.0m 6.0m	8% 11% 8%	66s 70s 64s	76.0 65.0 80.0	40.0% 70.0% 21.0%	0.0m 0.0m 0.0m	6.0m 6.0m 6.0m	15% 27% 12%	66s 64s 74s	72.0 57.0 80.0
PPO Pl	PlanT	PlanT	45.0%	0.0m	7.0m	7%	69s	72.0	51.0%	0.0m	6.0m	18%	70s	67.0
FREA	Expert	Expert PlanT	4.0% 10.0%	0.0m 0.0m	7.0m 7.0m	7% 5%	67s 73s	89.0 86.0	9.0% 10.0%	0.0m 0.0m	6.0m 7.0m	16% 24%	75s 86s	83.0 79.0
FREA	PlanT	Expert PlanT	5.0% 9.0%	0.0m 0.0m	7.0m 7.0m	5% 6%	62s 73s	90.0 87.0	14.0% 17.0%	0.0m 0.0m	6.0m 7.0m	15% 18%	75s 83s	82.0 79.0

FREA-trained AV shows better performance

Table 5: Comparative performance of AVs pretrained with various CBV methods across different maps. Results are the average of 10 runs in "Scenario9" with varied seeds.

Surr. CBV	CBV	Town05 intersections						Town02 intersections					
		$\operatorname{CR}\left(\downarrow\right)$	$OR\left(\downarrow ight)$	$\mathrm{RF}\left(\downarrow ight)$	UC (\downarrow)	TS (\downarrow)	OS (†)	$CR(\downarrow)$	$OR\left(\downarrow ight)$	$\mathrm{RF}\left(\downarrow ight)$	UC (\downarrow)	TS (\downarrow)	OS (†)
Standard	Standard	11%	4m	19m	4%	68s	85	39%	8m	20m	18%	57s	70
PPO		17%	11m	17m	6%	66s	82	40%	11m	19m	15%	63s	70
FREA		3%	6m	18m	1%	75s	89	40%	3m	18m	19%	56s	71
Standard	FREA	39%	6m	17m	7%	66s	73	79%	3m	17m	35%	45s	51
PPO		36%	15m	21m	6%	66s	74	79%	4m	14m	37%	44s	51
FREA		31%	12m	17m	5%	71s	76	73%	3m	20m	28%	51s	55

Safe Bench

Representative Scenarios

Naturalness

- Route-based instead of goal-based
- Agent behavior modeling

- □ Integrating LLM for common sense
- Integrating traffic rules

Unnatural Behavior

Lacking Common Sense

FREA: Feasibility-Guided Generation of Safety-Critical Scenarios with Reasonable Adversariality Q&A

